2,271 research outputs found

    Cerebellar ataxia with spasmodic cough: a new form of dominant ataxia

    Get PDF
    Background: Although mentioned in most series, “pure” autosomal dominant cerebellar ataxias, except spinocerebellar ataxia type 6, are difficult to differentiate on clinical grounds. Objective: To describe Portuguese families with a peculiar pure form of dominant ataxia that, to our knowledge, has never been documented before and in which cerebellar signs are preceded by spasmodic cough. Patients: Through a population-based survey of hereditary ataxias in Portugal, we identified 19 patients in 6 families with this particular disorder. Results: The majority of patients had a pure late-onset ataxia with a benign evolution. In all of the families, attacks of spasmodic coughing preceded ataxia for 1 to 3 decades and were a reliable marker of the disease. In Portugal, this form of ataxia accounts for 2.7% of all of the dominant ataxias. Conclusions: The families that we describe shared some relevant clinical and imagiological features with spinocerebellar ataxia type 5 and the recently described spinocerebellar ataxia type 20, allelic to spinocerebellar ataxia type 5. Spinocerebellar ataxia types 5 and 20 could be different phenotypic expressions of the same molecular disorder. The association of a dominant ataxia with spasmodic cough is rare but probably underdiagnosed.Fundação para a Ciência e Tecnologi

    Novel homozygous GBA2 mutation in a patient with complicated spastic paraplegia

    Get PDF
    Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurological disorders characterized primarily by a pyramidal syndrome with lower limb spasticity, which can manifest as pure HSP or associated with a number of neurological or non-neurological signs (i.e., complicated HSPs). The clinical variability of HSPs is associated with a wide genetic heterogeneity, with more than eighty causative genes known. Recently, next generation sequencing (NGS) has allowed increasing genetic definition in such a heterogeneous group of disorders. We report on a 56- year-old man affected by sporadic complicated HSP consisting of a pyramidal syndrome, cerebellar ataxia, congenital cataract, pes cavus, axonal sensory-motor peripheral neuropathy and cognitive decline. Brain MRI showed cerebellar atrophy and thin corpus callosum. By NGS we found a novel homozygous biallelic c.452-1G > C mutation in the b-glucosidase 2 gene (GBA2), known to be causative for autosomal recessive hereditary spastic paraplegia type 46 (SPG46). The rarity of this inherited form besides reporting on a novel mutation, expands the genetic and clinical spectrum of SPG46 related HSP

    Pure Cerebellar Ataxia with Homozygous Mutations in the PNPLA6 Gene

    Get PDF
    Autosomal-recessive cerebellar ataxias (ARCA) are clinically and genetically heterogeneous conditions primarily affecting the cerebellum. Mutations in the PNPLA6 gene have been identified as the cause of hereditary spastic paraplegia and complex forms of ataxia associated with retinal and endocrine manifestations in a field where the genotype-phenotype correlations are rapidly expanding. We identified two cousins from a consanguineous family belonging to a large Zoroastrian (Parsi) family residing in Mumbai, India, who presented with pure cerebellar ataxia without chorioretinal dystrophy or hypogonadotropic hypogonadism. We used a combined approach of clinical characterisation, homozygosity mapping, whole-exome and Sanger sequencing to identify the genetic defect in this family. The phenotype in the family was pure cerebellar ataxia. Homozygosity mapping revealed one large region of shared homozygosity at chromosome 19p13 between affected individuals. Within this region, whole-exome sequencing of the index case identified two novel homozygous missense variants in the PNPLA6 gene at c.3847G>A (p.V1283M) and c.3929A>T (p.D1310V) in exon 32. Both segregated perfectly with the disease in this large family, with only the two affected cousins being homozygous. We identified for the first time PNPLA6 mutations associated with pure cerebellar ataxia in a large autosomal-recessive Parsi kindred. Previous mutations in this gene have been associated with a more complex phenotype but the results here suggest an extension of the associated disease spectrum

    Complex phenotype in an Italian family with a novel mutation in SPG3A.

    Get PDF
    Mutations in the SPG3A gene represent a significant cause of autosomal dominant hereditary spastic paraplegia with early onset and pure phenotype. We describe an Italian family manifesting a complex phenotype, characterized by cerebellar involvement in the proband and amyotrophic lateral sclerosis-like syndrome in her father, in association with a new mutation in SPG3A. Our findings further widen the notion of clinical heterogeneity in SPG3A mutations

    Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next-generation sequencing.

    Get PDF
    The hereditary spastic paraplegias (HSPs) are a group of genetic conditions in which spastic paralysis of the legs is the principal clinical feature. This is caused by a relatively selective distal axonal degeneration involving the longest axons of the corticospinal tracts. Consequently, these conditions provide an opportunity to identify genes, proteins and cellular pathways that are critical for axonal health. In this review, we will provide a brief overview of the classification, clinical features and genetics of HSP, highlighting selected HSP subtypes (i.e. those associated with thin corpus callosum or cerebellar ataxia) that are of particular clinical interest. We will then discuss appropriate investigation strategies for HSPs, suggesting how these might evolve with the introduction of next-generation sequencing technology. Finally, we will discuss the management of HSP, an area somewhat neglected by HSP research.We thank Rhys Roberts for reviewing the manuscript. This work was supported by grants from the UK Medical Research Council [MR/M00046X/1]; the Wellcome Trust [082381]; the Tom Wahlig Stiftung; and the UK HSP Support Group. The Cambridge Institute for Medical Research is supported by a Wellcome Trust Strategic Award [100140].This is the final published version. It first appeared at http://link.springer.com/article/10.1007%2Fs00415-014-7598-y

    A Pyramidal Cause of a Cerebellar Ataxia:HSP-7

    Get PDF
    A 43-year-old man presented with a slowly progressive fatigue and coordination problems, coupled with a radiological appearance of diffuse atrophy, especially in the cerebellar hemispheres. The diagnostic process was challenging because initially the additional investigations were focused on a cerebellar ataxia. In the following months, his ataxic gait developed in a more spastic pattern and whole exome sequencing revealed mutations in the SPG7 gene, confirming a diagnosis of hereditary spastic paraplegia. Therefore, the authors call for an extension of genetic panels in ataxia patients

    Application of a Clinical Workflow May Lead to Increased Diagnostic Precision in Hereditary Spastic Paraplegias and Cerebellar Ataxias: A Single Center Experience

    Get PDF
    The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate, which can be influenced by patients\u2019 selection. To assess if a clinical diagnosis of CA/HSP received in a third-level reference center might impact the molecular diagnostic yield, we retrospectively evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and 102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias (SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24 CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including 29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were identified. Our results support the role of experienced clinicians in the diagnostic assessment and the clinical research of CA and HSP even in the next generation era
    corecore